Solvability Conditions for Indefinite Linear Quadratic Optimal Stochastic Control Problems and Associated Stochastic Riccati Equations

نویسنده

  • Kai Du
چکیده

A linear quadratic optimal stochastic control problem with random coefficients and indefinite state/control weight costs is usually linked to an indefinite stochastic Riccati equation (SRE), which is a matrix-valued quadratic backward stochastic differential equation along with an algebraic constraint involving the unknown. Either the optimal control problem or the SRE is solvable only if the given data satisfy a certain structure condition that has yet to be precisely defined. In this paper, by introducing a notion of subsolution for the SRE, we derive several novel sufficient conditions for the existence and uniqueness of the solution to the SRE and for the solvability of the associated optimal stochastic control problem. Disciplines Engineering | Science and Technology Studies Publication Details Du, K. (2015). Solvability conditions for indefinite linear quadratic optimal stochastic control problems and associated stochastic Riccati equations. SIAM Journal on Control and Optimization, 53 (6), 3673-3689. This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/5314

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of indefinite stochastic Riccati equations and linear quadratic optimal control problems

A new approach to study the indefinite stochastic linear quadratic (LQ) optimal control problems, which we called the “equivalent cost functional method”, is introduced by Yu [15] in the setup of Hamiltonian system. On the other hand, another important issue along this research direction, is the possible state feedback representation of optimal control and the solvability of associated indefini...

متن کامل

Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls

The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...

متن کامل

Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II

This paper considers optimal (minimizing) control of stochastic linear quadratic regulators (LQRs). The assumption that the control weight costs must be positive definite, inherited from the deterministic case, has been taken for granted in the literature. It is, however, shown in this paper that some stochastic LQR problems with indefinite (in particular, negative) control weight costs may sti...

متن کامل

Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati

A stochastic linear quadratic (LQ) control problem is indefinite when the cost weighting matrices for the state and the control are allowed to be indefinite. Indefinite stochastic LQ theory has been extensively developed and has found interesting applications in finance. However, there remains an outstanding open problem, which is to identify an appropriate Riccati-type equation whose solvabili...

متن کامل

Linear-Quadratic Control of Discrete-Time Stochastic Systems with Indefinite Weight Matrices and Mean-Field Terms

In this paper, the linear-quadratic optimal control problem is considered for discretetime stochastic systems with indefinite weight matrices in the cost function and mean-field terms in both the cost function and system dynamics. A set of generalized difference Riccati equations (GDREs) is introduced in terms of algebraic equality constraints and matrix pseudo-inverse. It is shown that the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015